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Abstract—Many climate modeling studies have demon-
strated the importance of two-way interactions between
ozone and atmospheric dynamics. However, atmospheric
chemistry models needed for calculating changes in ozone
are computationally expensive. Nowack et al. [1] high-
lighted the potential of machine learning-based ozone
parameterizations in constant climate forcing simulations,
with ozone being predicted as a function of the atmo-
spheric temperature state. Here we investigate the role
of additional time-lagged temperature information under
preindustrial forcing conditions. In particular, we test
if the use of Long Short-Term Memory (LSTM) neural
networks can significantly improve the predictive skill of
the parameterization. We then introduce a novel workflow
to transfer the regression model to the new UK Earth
System Model (UKESM). For this, we show for the first
time how machine learning parameterizations could be
transferred between climate models, a pivotal step to
making any such parameterization widely applicable in
climate science. Our results imply that ozone parame-
terizations could have much-extended scope as they are
not bound to individual climate models but, once trained,
could be used in a number of different models. We hope to
stimulate similar transferability tests regarding machine
learning parameterizations developed for other Earth
system model components such as ocean eddy modeling,
convection, clouds, or carbon cycle schemes.

I. MOTIVATION

While being a greenhouse gas and air pollutant,
ozone is also the only absorber of harmful solar UV-
B radiation which would otherwise make life on Earth
impossible [2]. Ozone’s distribution in the atmosphere
is constantly affected by anthropogenic and natural fac-
tors, from changes in the stratospheric circulation [3, 4]
to chemical reactions [5–8]. Its importance for global
radiative transfer in turn induces feedback effects on
the Earth system by modulating temperature, dynamics
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and the biosphere [9–14]. A number of previous studies
used machine learning methods to understand and to
model factors influencing ozone, e.g. to forecast air
quality [15, 16], to model ozone dry deposition [17]
and iodide surface emissions [18], or to infer differences
among chemistry models [19].

Here we explore the potential to use machine
learning-based ozone parameterizations in constant
forcing climate model simulations. Specifically, we fo-
cus on preindustrial simulations, which are core exper-
iments in climate modeling intercomparsions [20, 21]
and which are typically run for centennial to millen-
nial time-scales. Atmospheric chemistry schemes add
substantially to the overall high computational costs of
such simulations, mainly because they require repeated
numerical approximations to the transport equations
of dozens of chemical tracers as well as to the large
system of coupled chemical rate equations [22]. In
preindustrial simulations, ozone’s impact on climate is
primarily determined by two-way interactions between
the variability in ozone and climate. This is particularly
true for the stratosphere, where changes in ozone have
been found to modulate the Quasi-Biennial Oscillation
[QBO, 23] or the polar vortices [24, 25].

Our paper is motivated by results presented in
Nowack et al. [hereafter N2018, 1] who showed that,
in certain simulations, the global ozone distribution
could be well predicted by temperature-based machine
learning regression functions. Here, we first revisit
those results and test if further time-lagged temperature
information improves the parameterization. We then in-
vestigate for the first time how such a parameterization
could be transferred among climate models.

II. METHOD

As in N2018, we fit regression models that predict
daily-mean ozone distributions at timestep t based
on the previous day’s temperature distribution. This
time resolution is sufficient to capture the large-scale
behaviour of the relatively slowly-moving stratosphere,
where interactions between ozone and climate are par-
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ticularly important [e.g. 23]. More formally, we attempt
to predict ozone mixing ratios Y in every model grid
cell k of a global climate model as a function f of the
global temperature state X

Y (t)
k = f(X(t�1)) (1)

Below we further test the importance of lagged temper-
ature information (X(t�2), . . . , X(t�⌧max)).
Climate model data. The primary preindustrial climate
model temperature and ozone data was produced using
the HadGEM3-AO model from the UK Met Office [26],
coupled to the atmospheric chemistry scheme UKCA
[4, 27]. In these preindustrial simulations, atmospheric
CO2 is held at 285 ppmv. We use a continuous 50-year
long time slice of daily mean ozone (Ytrain) and temper-
ature (Xtrain) data for training and cross-validation. Pre-
dictions (Figure 1) were then made on an independent
13-year long test set (Xtest, Ytest). For the second part of
this paper where we develop the model transferability
workflow, we used 20-year long preindustrial temper-
ature and ozone datasets (XUKESM, YUKESM) produced
by the new United Kingdom Earth System Model
[UKESM, 28] for the Coupled Model Intercomparison
Project Phase 6 [CMIP6, 21]. All UKESM data was
bi-linearly interpolated to the HadGEM3-AO horizontal
grid and we select identical vertical levels for the two
models. All temperature data was pre-processed by
removing each grid cell’s training data mean µtrain,k and
by scaling to approximately unit variance

Xnorm
train,k =

Xtrain,k � µtrain,k

�train,k
(2)

Xnorm
test,k =

Xtest,k � µtrain,k

�train,k
(3)

Xnorm
UKESM,k =

XUKESM,k � µtrain,k

�train,k
(4)

Regression models and cross-validation. Following
N2018, we use Ridge regression as the baseline ap-
proach for the temperature-ozone mapping. Ridge re-
gression is a linear least squares regression augmented
by L2-regularization to address the bias-variance trade-
off [29]. The cost function

Jk =
NX

t=1

0

@Y (t)
k �

pX

j=1

ckjX
(t�1)
pca,j

1

A
2

+ ↵
pX

j=1

c2kj (5)

is minimized for each model grid cell k over N
timesteps. We applied principal component analysis
[PCA, 30] to X to speed up the training procedure.
We here retain the first p=1000 components (equalling

>95% represented variance; for extensive numerical
tests see N2018 Supplementary Figure S1a) as a com-
promise between model complexity and model per-
formance. Smaller (larger) values of ↵ put weaker
(stronger) constraints on the size of the coefficients,
thus favoring overfitting (high bias). We use a standard
time series cross validation method to find the best
value for ↵, in which the time-ordered training data is
split into five subsets of equal size. Preceding subsets
are then sequentially used as training data for each
subsequent subset (i.e. set 1 for 2, set 1+2 for 3 etc.). ↵
is found according to the average generalization error.

We compare the performance of the Ridge regres-
sions to Long Short-Term Memory (LSTM) neural
networks, which can process time-lagged information
highly effectively [31, 32]. We tested a range of bias
and recurrent regularization parameter values in a non-
stateful setting, varied the number of timesteps ac-
counted for in the memory unit (up to 10 days), and
also used different network architectures (one vs. two
LSTM layers with up to 100 neurons per layer). All
network architectures were fitted with ReLU activation
functions for the LSTM layers and linear activations
directed towards the output layer. In each case, we
trained the network for 750 epochs using varying
batch sizes (>256). The number of epochs was chosen
according to their respective error learning curves as
to avoid overfitting. To assert stability, we scaled all
inputs/outputs to within (0,1)/(-1,1) range. Only the
best settings after cross-validation on a 40-to-10 year
training data split are discussed below. For all data
pre-processing and regression tasks, we used Python’s
scikit-learn, keras and tensorflow packages [33, 34].

III. RESULTS

HadGEM3-AO test data results. Figure 1 shows four
examples of ozone time series in different areas of the
stratosphere1: in the tropical upper stratosphere (Figure
1a), where ozone concentrations are mainly determined
by local photochemical reactions [5, 35], the tropical
lower stratosphere where the longer time-scales of the
Brewer-Dobson circulation and QBO pose the primary
control mechanisms [Figure 1b; 3, 36], the mid-latitude

1There are on the order of 420,000 grid cells in HadGEM3-AO
and more than 2,300,000 grid cells in UKESM. In the following,
mainly to keep the computational expense of training the regression
models in bay and to describe our approach intuitively, we focus
our discussion on individual climate model grid cells which were
found to be characteristic of the general method’s performance in
different atmospheric regimes. For global performance metrics using
larger sets of grid cells see the extensive numerical results in the
Supplementary Material of N2018.
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Chemistry-climate model Ridge: MSE=0.34, R=0.93 LSTM: MSE=0.38, R=0.92 Climatology: MSE=1.00, R=0.76

Ridge: MSE=0.20, R=0.91 LSTM: MSE=0.34, R=0.88 Climatology: MSE=1.00, R=0.40

Ridge: MSE=0.16, R=0.95 Climatology: MSE=1.00, R=0.61

Ridge: MSE=0.62, R=0.92 Climatology: MSE=1.00, R=0.87

Fig. 1. Ozone time series for four climate model grid cells characteristic of different atmospheric regimes. (Black) Preindustrial climatology.
(Blue) Ozone as simulated by the fully interactive chemistry-climate model. (Red) Ridge regression predictions. In the top two panels,
we additionally show the results of LSTM predictions (magenta). Grid coordinates are as labeled. R is the Pearson correlation coefficient
between the chemistry-climate model time series and the predictions. MSE is the ratio of mean squared errors of machine learning
predictions relative to the chemistry-climate model data, divided by the same error for the climatologies (values <1 imply improvement).

upper stratosphere where seasonal wave-breaking is
important [Figure 1c; 3] and the Southern Hemisphere
lower stratosphere where the periodic break-down of
the polar vortex is a key feature [Figure 1d; 8]. For
each grid cell, we show the actual chemistry-climate
model data (blue lines), the corresponding predictions
using Ridge regressions (red) and seasonal ozone cli-
matologies (black). For the first two grid cells we also
show LSTM predictions (magenta), which here keep
a temperature memory of up to five days. Intuitively,
LSTMs could be useful as not only the present state
of the atmosphere is important for ozone’s distribution
but also its history, e.g. in the lower stratosphere where

ozone’s lifetime is much longer than one day. Ozone cli-
matologies (black) are frequently used in climate model
simulations and here represent 50-year monthly-mean
averages of Ytrain, which were subsequently linearly
interpolated to daily time resolution. The climatology
serves as a benchmark for a classic treatment of ozone
in preindustrial simulations without interactive atmo-
spheric chemistry. Due to the limited predictability of
short-term ozone fluctuations one day in advance, see
e.g. zoomed-in area in Figure 1c, we are interested in
ozone predictions that broadly represent the state of
ozone at any given time relative to this benchmark (see
also discussion in N2018). We evaluate the predictive
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a b c d

Fig. 2. Probability (kernel) density estimates for ozone volume mixing ratios in each of the four grid cells also shown in Figure 1.

skill relative to these climatologies through Pearson
correlation coefficients (R) and mean squared error
(MSE) ratios (details in caption of Figure 1), when
matched against the actual chemistry-climate model
data. These statistical results are shown inside each
panel of Figure 1.

The Ridge regressions provide a good approxima-
tion to the true chemistry-climate model results, as is
also evident from their respective ozone mixing ratio
density estimates (Figure 2). Both MSE and R are im-
proved in every grid cell relative to a model-consistent
preindustrial climatology; in particular in the tropical
mid-stratosphere where the QBO dominates and ozone
variability is not captured well by an annual climatology
(Figure 1b). Interestingly, the LSTM regressions do not
provide a significant improvement over the Ridge re-
gression approach despite their greater functional com-
plexity and longer memory of the temperature history.
Further performance gains might be achieved by more
extensive parameter and network architecture tuning.
However, the general result underlines previous findings
in N2018, where other non-linear algorithms were also
not found to perform better than Ridge regression. To
further validate this result, we also carried out 5-day-
lagged window Ridge regressions (not shown). We thus
conclude that the single time-step Ridge regression is
a solid method on this particular learning task and turn
to the question of model transferability.

Model transferability. There are two main obstacles
to transferring the parameterization from one climate
model to another: differences in (a) the temperature
fields and (b) the ozone fields. For example, even a
constant background temperature difference, as will
always occur among climate models [37], can seriously
interfere with the regression task as the inputs may,
for example, constantly take on extreme values relative
to the original model’s temperature distribution. This
in turn renders the machine learning parameterization
unable to make realistic ozone predictions.

To mitigate such effects, we found that the following
intuitive re-calibration procedure led to good results:
after standardization of the UKESM temperature data
according to equation (4), the resulting Xnorm

UKESM,k will
still have average values in each grid cell significantly
different from nil, simply due to the aforementioned
time-average discrepancies in the background tempera-
ture state. We thus re-calibrated the temperature data to
an approximately zero mean by subtracting the average
offset over the first n number of years (Xnorm

UKESM,k)

Xadjusted
UKESM = Xnorm

UKESM �X
norm
UKESM (6)

Empirically, we found that calibrations using the first
n=5 or 10 years yielded almost identical results. In
addition, we applied a re-calibration procedure to the
predicted ozone field. We separate the ozone mixing ra-
tios predicted by the regression (trained on HadGEM3-
AO data) when provided with the re-calibrated temper-
ature input from the UKESM model (Xadjusted

UKESM) into a
climatological plus a variability term for each cell

YHadGEM-consistent,k = YHadGEM-clim,k + Yvariability,k (7)

We then use again n years of UKESM data to approx-
imate a corresponding climatological term YUKESM-clim
which we use to replace the HadGEM climatology

YUKESM-consistent,k = YUKESM-clim,k + Yvariability,k (8)

Figure 3 shows the results of the corresponding re-
gressions (red) for three grid cells over the last ten
years of the UKESM dataset, located in the tropical
lower and mid-stratosphere as well as in the Northern
Hemisphere polar stratospheric region. In addition, we
show ozone climatologies from HadGEM3-AO (gray)
and calculated from the first 5 years of the UKESM
data (black). As before, we use the MSE ratio and
correlation coefficients to compare the predictions to
the actual UKESM interactive chemistry climate model
results (blue). The quantitative results are given directly
in each panel of Figure 3. The transferred Ridge regres-
sion performs typically far better than the climatologies
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Chemistry-climate model

HadGEM3→UKESM: MSE=0.29, R=0.89

Climatology UKESM: MSE=1.01, R=0.52 Climatology HadGEM3: MSE=1.00, R=0.52

HadGEM3→UKESM: MSE=0.53, R=0.88

HadGEM3→UKESM: MSE=0.11, R=0.82 Climatology UKESM: MSE=0.32, R=0.22

Climatology HadGEM3: MSE=1.00, R=0.20

Climatology UKESM: MSE=0.43, R=0.82 Climatology HadGEM3: MSE=1.00, R=0.59

Fig. 3. As Figure 1, but for ten years of UKESM data using the re-calibrated Ridge regressions for predictions (red). To calculate the
MSE ratio, we choose the errors when using the HadGEM3 climatology averaged over 50 years as the baseline (as in Figure 1).

both in terms of MSE and R. In terms of the MSE ratio,
the HadGEM3-AO climatology performs particularly
poorly in regions with major differences in background
ozone levels between the two climate models (Fig-
ure 3b). Finally, note that a better than climatological
performance is not guaranteed in this setting. For ex-
ample in Figure 3c, where a UKESM-consistent clima-
tology already achieves R-values greater than 0.8, the
MSE is worse for the transferred regression, mainly due
to constantly underestimated annual minimum values
using the Ridge regression. Such a feature may even
occur if we just used another atmospheric chemistry
scheme. Its annually repeating consistency could also
reflect changes in the underlying transport time-scales
(i.e. dynamics) between the two models.

IV. DISCUSSION

We have presented two important extensions to
temperature-based machine learning parameterizations:
1) Using LSTMs, which here took into account past
temperature state information of up to 5-10 days, we
tested for improved predictive skill. However, the re-

sults are comparable to those obtained with computa-
tionally cheaper Ridge regressions.

2) An intuitive re-calibration procedure to learn the
ozone parameterization from data produced by one
climate model (HadGEM3-AO) to then predict ozone
values for another climate model (UKESM). The re-
calibration is required for the temperature inputs,
whereas the ozone correction can be chosen more
flexibly, e.g. to adjust the field to a climatology of
the modeler’s choice. For example, in some cases there
might be no ground truth ozone state (e.g. in models
without interactive chemistry option) so that one might
either choose ozone values consistent with HadGEM3-
AO, or another background climatological field. Our
method could therefore in principle be used to remove
some persistent ozone model biases [see e.g. 38]. In
conclusion, the method outlined here could be used to
learn regression functions representing ozone variability
from long existing chemistry-climate model datasets.
Following re-calibration, the ozone parameterization
could then be used in long climate model simulations
such as under constant preindustrial forcing.
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